31. $t = -2 \pm 2i$

33.
$$x = -3 \pm i$$

35.
$$x = 5 \pm 2\sqrt{7}$$

37. The constant 4(9) = 36 should have been added to the right side of the equation instead of 9.

$$4x^{2} + 24x - 11 = 0$$

$$4(x^{2} + 6x) = 11$$

$$4(x^{2} + 6x + 9) = 11 + 4(9)$$

$$4(x + 3)^{2} = 47$$

$$(x + 3)^{2} = \frac{47}{4}$$

$$x + 3 = \pm \frac{\sqrt{47}}{2}$$

- 39. yes; All of the steps would be the same as with two real solutions, with the exception of the constant being negative when you take the square root.
- **41.** factoring; The equation can be factored; x = 7 and x = -3
- **43.** square roots; The equation can be written in the form $u^2 = d$; x = -8 and x = 0
- **45.** factoring; The equation can be factored; x = -6
- **47.** completing the square; The equation cannot be factored or written in the form $u^2 = d$; $x = -1 \pm \frac{\sqrt{10}}{2}$

- **49.** square roots; The equation can be written in the form $u^2 = d$; $x = \pm 10$
- **51.** $x = -5 + 5\sqrt{3}$
- **53.** $x = -2 + 2\sqrt{21}$
- **55.** $f(x) = (x 4)^2 + 3$; (4, 3)
- **57.** $g(x) = (x+6)^2 + 1; (-6, 1)$
- **59.** $h(x) = (x+1)^2 49; (-1, -49)$
- **61.** $f(x) = (x \frac{3}{2})^2 + \frac{7}{4}; (\frac{3}{2}, \frac{7}{4})$
- **63. a.** 22 ft
 - b. about 2.1 sec
- 64. 510 ft; 3 sec